If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5u^2-25=0
a = 5; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·5·(-25)
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{5}}{2*5}=\frac{0-10\sqrt{5}}{10} =-\frac{10\sqrt{5}}{10} =-\sqrt{5} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{5}}{2*5}=\frac{0+10\sqrt{5}}{10} =\frac{10\sqrt{5}}{10} =\sqrt{5} $
| 14x+8=5x+9 | | 2(f-4)-1=5 | | 9j+5=-4 | | -4j−5=-4j | | -7−6k=-6k−7 | | 3+3h=3h | | 2(y=10)+20=16 | | 2m^2=72m | | 5w=5w+5 | | -4t+4=-4t | | -5+6g=6g−5 | | 3(z+1)+2=17 | | 9(5y-5)-(6y+8)=0 | | -5.3•2.1=x | | -5.2•2.1=x | | 4+5j=5j | | (8)(x)(3x+2)=680 | | x+(x+28)+2x=180 | | -3x=3= | | 4.6+10m=6.48 | | 19=2(c+1)+7 | | -1(w-12)=30 | | x+(1/2x-15)=180 | | -4(n+14)=0 | | 2(d+1)-2=2 | | -3(f+6)+6=3 | | 288n^2-392=0 | | d=51*11/2 | | 2=m-5/2 | | 20m(m+1)=m-3 | | 3(g+2)+5=20 | | 9d+1=19 |